National Aeronautics and Space Administration

An Overview of NASA's Environmentally Responsible Aviation Project

....

100

Presenter - - Fayette Collier, Ph.D., M.B.A.

2014 ICAS St. Petersburg, Russia

www.nasa.gov

Outline

- Impact of the Research
- Introduction
- ERA Phase I
- ERA Phase II
 - Integrated Technology
 Demonstrations
 - Details of ITDs

757 AFC Enhanced Vertical Tail installed in NFAC End of day tuft maintenance

NASA Aeronautics is delivering technology that is relevant to next generation aircraft designs and will impact the carbon footprint of the fleet

Terminal Area Forecast 2011

Impact at the Vehicle Level – Noise Footprint

NASA Aeronautics is delivering technology that is relevant to next generation aircraft designs and will impact the noise footprint of the fleet

- Vision
 - expand the viable and well-informed trade space for commercial transport design decisions
 - enable simultaneous realization of national noise, emissions, and performance goals by 2025
- Mission
 - Execute integrated technology demonstrations
 - Partner w/Industry and transfer knowledge
- Scope
 - Mature technology for application in the 2020+ time frame
 - Advance the state-of-the-art, reduce risk of application
 - Perform system/subsystem research in relevant environments

Introduction ERA Project Flow with Key Decision Points

Technical input from Fundamental Programs, NRAs, Industry, Academia, Other Gov't Agencies

FY 10-14 are full cost budgets FY 15 is projected budget from most recent President's Budget submit

- Open Rotor Development and WT Test in the GRC 9x15 (w/GE)
- Low NOx Combustor Development in ASCR at GRC (w/GE and P&W)
- X-48B/C Low Speed Flight Controls Test Campaign (w/Boeing)
- HWB Community Noise Reduction Propulsion AeroAcoustics (PAA) Test Campaign in the 14x22 WT (w/Boeing)
- Advanced Vehicle Concept Study (w/Lockheed, NGC, Boeing)

ERA Phase I Open Rotor R&D Test Campaign

Open Rotor Propulsion Rig installed in GRC's 8x6 and 9x15 Wind Tunnels

This technology applied to advanced 2025 EIS single aisle A/C showed 36 percent block fuel reduction & 15 EPNdB cum. noise margin below Stage 4 (compared to 1998)

ITD

	שח
Drag Reduction of 8 percent	Finish
 ITD 12A+ - Active Flow Control Enhanced Vertical Tail and 	
Advanced Wing Flight Experiment	7/2015
Weight Reduction of 10 percent	
- ITD 21A - Damage Arresting Composites Demonstration	7/2015
- ITD 21C - Adaptive Compliant Trailing Edge Flight Experiment	4/2015
SFC and Noise Reduction of 15 percent and 15 EPNdB	
 ITD 30A – Highly Loaded Front Block Compressor Demo 	9/2015
 ITD 35A – 2nd Generation UHB Propulsor Integration 	6/2015
NOX Reduction of 75 percent below CAEP 6	
 ITD 40A – Low NOX Fuel Flexible Combustor Integration 	7/2015
Noise and Fuel Burn Reduction of 42 EPNdB and 50 percent	
 ITD 50A – Flap Edge and Landing Gear Noise Reduction 	
Experiment	8/2015
 ITD 51A – UHB Integration for Hybrid Wing Body Aircraft 	7/2015

ERA Phase II AFC Enhanced Vertical Tail and Advanced Wing

Active Flow Control on B757 Tail

Thank you for your attention!

fayette.s.collier@nasa.gov

Integrated Technology Demonstrator **AFC Vertical Tail and Advanced Wing Flight Test**

NOx

Noise

End TRL: 6

Technology Insertion Challenges Addressed

TSFC

- Full-scale AFC demonstration in flight system
 - Actuator scaling, location, and operability
- Integration of AFC power source

Drag

Weight

- Effect of flight profile on insect accumulation ٠
- Durable, repairable insect abhesion surfaces

Integrated Technology Demonstrator Adaptive Compliant Trailing Edge Flight Demonstration

Weight Drag TSFC Noise NOx

Technology Insertion Challenges Addressed

- Airworthy, compliant trailing edge
- Transition region
- Analytical and ground test flutter predictions validated through high speed flight

End TRL: 6

AFRL & FLEXSYS Flap

Integrated Technology Demonstrator Highly Loaded Front Block Compressor Deomonstration

Weight

Drag **TSFC** Noise

NOx

Technology Insertion Challenges Addressed

- Identify loss mechanisms and interaction effects of highly-loaded compressor stages
- Trade-off between OPR, Efficiency, and operability to optimize fuel burn
- Establish part-speed operability margin
- Integrated 1st 3 stages of HPC with engine bleed and inlet flowpath

End TRL: 5

Unsteady Interactions Predicted by CFD: Entropy Plot

Integrated Technology Demonstrator 2nd Generation UHB Propulsor Integration

NOx

Weight Drag TSFC Noise

Technology Insertion Challenges Addressed T

- Noise reduction & aero performance of advanced liners validated
- Comprehensive- modern database of propulsor multi-discipline performance characteristics
- Integrated performance of modern fan + advanced FEGVs + short inlet verified

Integrated Technology Demonstrator **Fuel Flexible, Low NOX Combustor Integration**

Noise

Weight

TSFC Drag

NOx

Technology Insertion Challenges Addressed

- The lean burn system operability concerns •
 - auto-ignition
 - flame stability •
 - acoustic resonance •
- Durability with reduced cooling flow
- 50/50 jet/alt fuel mixture

CFD of film cooling and **CMC** liners

% CAEP6 LTO Emissions in a N+2 Cycle

Integrated Technology Demonstrator UHB Integration on a Hybrid Wing Body

End TRL: 5

Weight Drag TSFC Noise NOx

Technology Insertion Challenges Addressed

- Optimization of engine Integration for all envelope performance
- UHB engine operability at low speed, high α and β
- Balance solution for low drag with low noise
- Hi-fidelity simulation for cruise drag of HWB/UHB integration

